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Abstract -A new technique is developed for approximating exchange factors for specular radiation passages. 
It is shown that For a large class of configurations; even with curved reflector surfaces, the average number of 
reflections (n) can be calculated by a simple analytic formula and without any ray tmcing. The fraction of 
radiation transmitted through the passage, r (one of the exchange factors), can then be approximated by r 
z p<“) if the specular reflectivity p of the passage wall is high. A rigorous lower bound is derived which agrees 
with the exact result within a few percent for any c = 1 -p. provided I is not too large. Several examples 
are discussed, including cylindrical passages, V-troughs and compound parabolic concentrators. The 
method is particularly useful for calculating transmission and absorption of radiation in solar concentrators. 

NOMENCLATURE 

area, with appropriate subscripts, e.g. 
A, = reflector area; 
concentration,= AA/AB; 

exchange factor, with approp~ate subscripts, 
e.g. EB -A(~) = exchange factor for 
radiation from B to A; 

shape factor, with appropriate subscripts, 
e.g. Fs -A = shape factor for radiation 
fromBtoA; 
average number of reflections, with 
appropnate subscnpts, e.g. ( n)B _A 

= average number of reflections for 
radiation from B to A; 

probability of n reflections, with 
appropriate subscripts, e.g. PB -a(n) 
= probability of n reflections for radiation 
fromBtoA; 
radiation heat transfer (power), with 
appropriate subscripts, e.g. QB_A = transfer 
from B to A, and QeFt,4 = net transfer 
between 3 and A; 

absolute temperature, with appropriate 
subscripts, e.g. TR = temperature of 
reflector; 
emissivity (absorptivity) of reflector; 
= l-8, reflectivity of reflector; 
Stefan-Boltzmann constant; 
transmission factor, = EA _&). 

The subscripts A, B and R refer to entrance aperture, 
exit aperture and reflector wall, respectively. The 
quantities 1, h, r, q = l/r, 4, 8 designate characteristic 
dimensions or angles of radiation passages. 

1. EVTRODUCI’ION 

RADIATION heat exchange in enclosures with specular 
surfaces can be extremely difficult to calcutate, es- 

*Work supported by the U.S. Energy Research and 
Development Administration. 

pecially if the specular surfaces are curved. Only in the 
last two decades has this problem been studied 
systematically [l-3]. The introduction of the ex- 
change factor was a very significant advance since it 
provides an elegant general framework for the analysis 
of radiation transfer between surfaces which are 
partially specular and partially diffuse. The evaluation 
of the exchange factors themselves, however, has 
remained a tedious task, generally involving the 
summation of a large or infinite number of reflections. 
For this reason many calculations rely on computers 
to carry out the ray tracing. Such numerical methods 
can consume a great deal of computing time in system 
optimization studies. On the other hand, a simple 
analytic formula, even if only approximate, may be 
valuable not only because it saves computer time, but 
also because it can provide better intuitive understand- 
ing and serve as guide in the selection of a good design. 

This article presents a new approach which is based 
on the concept of the average number of reflections 
(n), and provides a simple approximation for the 
transmission factor T, i.e. the fraction of radiation 
which is transmitted through a specular passage. In the 
notation of [3] and Fig. 1, r is an exchange factor, r 
= E, _B(p). Since exchange factors depend only on the 
specular component ps of the reflectivity, we shall 
assume p = ps throughout this paper. (n) is defined 
with respect to radiation leaving an emitter (rather 
than arriving at an absorber) and hence it depends 
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FIG. 1. Radiation passage; entrance aperture A, reflector 
wall R, exit aperture B. 
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only on geometry but not on surface properties. Two 
formulas are derived which are useful whenever (n) is 
sufficiently small (generally (n) 6 1). The first one, r 
2 p’“), is appropriate if the reflectivity p of the passage 
wall is high. The second one, just slightly more 
complicated, is actually a rigorous lower bound which 
agrees with the exact result to within a few percent 
when s(n) 6 0.1, for any E = 1 -p. For some con- 
figurations, good agreement is obtained even for 
E(n) 2 1. 

The paper is organized as follows: In Section 2, the 
connection between exchange factors and average 
number of reflections (n) is established by considering 
the radiation balance of the reflector, and the approxi- 
mation z ‘5 p(“) and the rigorous lower bound are 
justified. The remaining sections deal with examples 
where (n) can be calculated without ray tracing. In 
Sections 3 and 4, respectively, the approximations are 
compared numerically with the exact solution for 
circular cylindrical passages and for compound para- 
bolic concentrators. Further examples; parallel straight 
reflectors, cylindrical reflectors, V-troughs, modified 
compound parabolic concentrators and convolute re- 
flectors for tubes, are discussed in Section 5. We close, 
in Section 6, with some comments on the general 
applicability of this technique. 

2. RADIATION TRANSFER THROUGH SPECULAR 
PASSAGES AND AVERAGE NUMBER OF REFLECTIONS 

It is convenient to consider a radiation passage as a 
three-surface enclosure, as shown in Fig. 1, where R is 
specular, and A and B are diffuse. Since the formalism 
for calculating heat transfers in terms of exchange 
factors is well understood [3], we shall concern 
ourselves only with the evaluation of the latter. The 
exchange factor is defined as that fraction of the diffuse 
radiation leaving one surface which reaches another 
surface either directly or via any intervening specular 
reflections. For example, E, -A (p,) for the passage in 
Fig. 1 is the fraction of the diffuse radiation emanating 
from B which reaches A directly or after specular 
reflection(s) off R; ps is the specular component of the 
reflectivity of R. Exchange factors are functions only of 
geometry and of the relevant specular reflectivities, in 
particular, they are independent of any diffuse com- 
ponents of reflectivity. Therefore, the exchange factors 
for the passage in Fig. 1 can be calculated by assuming 
R to be purely specular, p = ps, while A and B are 
perfectly black; this is a substantial simplification of 
the problem. 

Let us analyze the radiation transfers in Fig. 1, using 
the notation Q for power, A for area, and T for 
absolute temperature, with appropriate subscripts for 
each of the three surfaces A, B and R. Of the radiation 

QA = A,oT,4 (1) 

emitted by A a fraction EA+,@) arrives at B while 
another fraction, EA _“(P), is sent back to A. By energy 
conservation, the remainder 

Q A-R = [l-E,-,(p)-E,-,(p)lA,aT, (2) 

must have been absorbed by the reflector R. If the 
reflector is a diffuse emitter emissivity 6 = 1 -p, then 
the radiation transfer from R to A is 

Q R-A = E,-,(plA,~oT,4 (3) 

E, _A(p) being, ofcourse, the fraction of radiation from 
R which reaches A. By the second law of thermody- 
namics, the net transfer 

QA*R = QA-R-QR+I (4) 

must vanish if the temperatures TA and TR are equal. 
Thus, one can extract the relation (c.f. equation (9-44) 

of [41) 

~-E,-,(P)-E,-,(P) = +ER-At,I). (5) 

A 

For the transfer between B and R, we assume that 

&-B(P) = 0, (6) 

i.e. no radiation emitted by B returns to B; this is 
certainly true for passages whose width increases 
monotonically from B to A, as suggested in Fig. 1 or for 
passages of constant width as for example Fig. 3. We 
shall exclude from our considerations “constricted” 
passages of the type shown in Fig. 2, because for these . . . . . . . . . . . . . . . . . . . . 
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FIG. 2. Radiation passage for which neither EA -A nor E, -B 
vanish. 

FIG. 3. Cylindrical radiation passage of length 1 and radius r. 

neither EB -B nor E,, -A vanish and our technique does 
not yield any useful information. Then the relation 
analogous to equation (5) turns out to be 

l-EBeA(p) = E$%_B(p). 
B 

(7) 

From the radiation balance between A and B, one 
further findsthe wellknown reciprocity relation [3,4] 

AAEA-B(P) = ABJ%J-A(P). (8) 

In many cases, the quantities E, -A(p) and ER -&) 
turn out to be easy to calculate at the end points p = 0 
and p = 1. At p = 0, they reduce to ordinary shape 
factors 

E, -A(O) = F, -A and ER-8(0) = F, -B, (9) 



Radiation transfer through specular passages 

The calculation at p = 1 will be discussed in the 
following sections; for the moment we only point out 
the relation 
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one obtains, after ~terchanging the order of sum- 
mation, 

Es-A(P) = jIo ( (~))a_“(-&)k 
= 1-E{n)B_A+u(E2) 

where the expectation values are defined by 

ER-A(l)+ER-s(l) = 1 (10) 

which obviously follows from energy con~rvation if 
no radiation is trapped inside the cavity. As p in- 
creases, less of the radiation emitted by R is adsorbed 
on the way to A or B; therefore, ER -A(p) and Es -a(p) 
grow monotonically with p. By virtue of equations 
(S)-(8), their values at p = 0 and p = 1 provide rig- 
orous upper and lower bounds for all five exchange 
factors. 

Furthermore, for small E, the exchange factor 
E, _B(p) becomes equal to Es -J l)- O(E). Therefore, 
equation (7) becomes, in the same limit, 

1 -&-A(P) = +Ea_,(l)-O(s~): 
B 

in other words, knowledge of Es_,,(l) determines 
EB _“(P) to order E. In a similar manner, equations (S), 
(8) and (10) determine EA+(p) and EA_,A(~) order E. 

The upper bounds on the exchange factors can be 
improved even further (by what amounts to another 
order in E, for most configurations). The exchange 
factor ER _&) can be expanded in a power series 

&-B(P) =fo+~fi+~~fi+... (11) 

where p”f, is the fraction of the diffuse radiation from R 
which reaches B via n specular reflections. Since p” 
G p, this implies the inequality 

ER-AP) C.6 +~U,+fi-+li+...) 

which can be rewritten as (notef, = FR _e) 

&-B(P) G Ea-~fl)-s[EK-B(l)-FR-sl. (12) 

From this follows by use of equation (7) the rigorous 
lower bound ri.b. for EB-A 

Es-,&) >, Z1.b. = 1 --E 2 ER-dl) 

+Ez~[ERB(I)+~]. (13) 
3 

In order to provide both an intuitive interpretation 
and a simpler one-parameter approximation for the 
exchange factor EB-A(p), we consider the average 
number of reflections <r~)~ _A which radiation has to 
undergo on its passage from B to A. Ciearly, if all rays 
make n reflections, the exchange factor must be equal 
to p”. For the general case, however, one has to write 

-&Q-,(P) = g P”PB-.4(n), (14) 

where PB _“(n) is the probability that diffuse radiation 
emitted by B make exactly n reflections before reaching 
A. Let us convert this power series in p to one in E = 1 
- p. Using the binomial expansion to rewrite equation 
(14) as 

-%-x&d = 2 Pa-.,(n) (15) 
n=O 

(16) 

((~))a_~ = johhltn)(;). (17) 

Expanding in a similar fashion, the quantity 

<nY 
p’“’ = 1 --(rz)& -I- - E2- +... 

2 
(18) 

one learns that in general, the formula 

EB-A(p) N p(“)B-A (19) 

is valid only to lowest order in E; it is exact if and only if 
(n)k_, = <nk>s_A for all k = 0,1,2.. . . (Since ((n*) 
-(?l)2)1’2 is the standard deviation, this condition is 
satisfied only if all rays make the same number of 
reflections.) For many configurations (a);_, and 
(n2)s_A will not differ significantly and hence this 
simple formula can give good numerical results even 
for fairly large s. We present some numerical examples 
in the next section. 

The average number of reflections is found by 
combining equations (7) and (I 6) and taking the limit E 
+ 0, with the result 

(n)B-1 = 2 E&s(l). 

In some cases the interchange of summations* in 
equation (15) may not be justified. However, a slightly 
more complicated proof, presented in the appendix, 
shows that equation (20) holds whenever P,_,(n) 
decreases fast enough as n + co to make ( rQB -d finite. 

In terms of (n)B_A, the lower bound (13) can be 
reexpressed in the form 

&I-,(P) a %b. = l-&(6%1-, 

+~2r#<GI-A-~B-RJ (21) 

where FB _R is an ordinary shape factor. 
The exchange factor EA _rt can also be interpreted in 

terms of an average number of reflections. For this 
purpose, it is appropriate to define the average ( n>a _A 
with respect to that fraction of the diffuse radiation 
from A which can get back to A; this fraction is given 

by 

EA-A(l) = I-$. (22) 
A 

Equations (5), (7) and (8) can be combined to 

EA-,,(P) = EI_,(~)+&P[ER-~(~)-E-~(P)I. 
A 

(23) 

*See any textbook on analysis, e.g. [5]. 
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Comparison with 

E;i_,&) = &-,(l)(J(“)~~-* (24) 

in the limit E -+ 0 yields the average number of 
reflections 

3. CYLINDRICAL RADIATION PASSAGE 

It is instructive to compare the approximations 
developed in this paper with the exact solution for the 
case of the cylindrical passage, Fig. 3, one of the few 
nontrivial examples for which the exact solution is 
known [Z]. Even though neither EA _&) nor ER -a(p) 
are listed explicitly in [2], they can easily be derived 
from the exchange factor EdR _A for radiation from an 
infinitesimal ring element dR. The latter is given in 
equation (29) of [2] 

EdR _A = E ; p”- ’ 
“=I 

where vi = ldr is the coordinate (along the cylinder 
axis) of dR. E, -A is found by averaging over the entire 
wall R 

I v 
E, -B = E, -A = a 

s 
dViJ%, -A(yIi) * (27) o 

where v = i/r. Inserting equation (26) and integrating, 
one finds 

Combined with equation (7), this yields the desired 
exchange factor EA _r,(p) (= transmission factor 7) 

z = E,_,(p) = 1-q~~ ; p”-’ 
n=, 

With regard to the approximations, we note that 
symmetry implies 

E,_,(p = 1) = f, (30) 

because in the limit p -+ 1, all radiation emitted by R 
must escape either through A or through B. (Of course, 
the p -+ 1 limit of equation (28) agrees with that.) 
Together with the area ratio 

A&_ 
A, r “I 

(31) 

this implies, via equation (20), that the average number 

of reflections is 

(n) =I (32) 

for a specular cylindrical radiation passage of length 1 
and radius r. Since the radiation shape factor FA -R is 

FA+ = ~(1 +‘14/4)‘12-ljr2,J2, (33) 

the lower bound (21) for the transmission factor is 

E,4 -B(P) 2 ?I.b. = 1 -qE 

+&2[1-rI(l +Y12/4)“2 +$/2]. (34) 

In Fig. 4, we have plotted the exact solution (29) as 
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F!G. 4. Transmission factor T for cylindrical passage for 
different values of p. Solid line exact solution (29); dashed lin 

lower bound (34); dotted line pen). 
e 

solid line, the lower bound (34) as dashed line, and the 
approximation 

r N pl’* (35) 

as dotted Iine, for severa values of p from 0.1 to 0.9. As 
expected, the approximations are reliable when e(n) is 
small. For example, if a(n) 6 0.1, the simple formula 
pen) is accurate to at least 3P;; for E < 0.3, while the 
lower bound (34) agrees with the exact answer to about 
1% for all e > 0.3. 

4 COMPOUND PARABOLIC CONCENTRATOR 

A radiation concentrator of considerable interest for 
solar energy collection is the compound parabolic 
concentrator [6-8]. It consists of two parabolic seg- 
ments, arranged as shown in Fig. 5. Here we consider 
only the two-dimensional, or troughlike version. This 
concentrator has the property of accepting all radi- 
ation which hits the aperture A within the acceptance 
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FIG. 5. Compound parabolic concentrator with acceptance 
half angle 0. 

angle (l&l G 0) and concentrating it by a factor 

1 
CL+. (36) 

3 sin @ 

(The three-dimensional, or conelike version con- 
centrates by l/sin2 0.) (This is the maximum con- 
centration permitted by the second law of thermody- 
namics [&lo].) All radiation outside the acceptance 
angle, i.e. ISi,\ > B is rejected as indicated in Fig. 6. 

Fraction of radiation 

transmitted 

FIG. 6. Fraction of radiation incident at angle ei,, on aperture 
A of compound parabolic concentrator of acceptance half 
angle, Fig. 5, which is transmitted to exit aperture B, if p = 1. 

For this configuration, ER _B( 1) is easy to calculate 
because radiation cannot cross over from one side of 
the reflector to the other if it is to get from A (or R) 
to B. Therefore, the exchange factor EIR-s(1) for an 
infinitesimal element dR of the reflector is 

J&R -e(I) = I/2 
s 

r/z 
cos 8’ d6 = l/2( 1 -sin @,) , 

8, 
(37) 

Bc being the angle between reflector normal at dR and 
the line from dR to the far edge of the absorber B as 
shown in Fig. 7. The complete exchange factor is found 

B 

FIG. 7. Calculation of J&a(l) for compound parabolic 
concentrator. 

by averaging EdR _J 1) over the whole reflector area: 

&-e(l) = $ 
s 

dR EdR -iJl) . 08) 

For the integration, it is convenient to use a particular 
coordinate system, for example, Cartesian coordinates 
with y axis along the parabola axis, but the result is, of 
course, coordinate independent : 

j&#)=: l/ 1 _~(1-s1n@&+2s’no) 
^1 R i is 

(39) 

For the reflector area one finds, 

A, = A, sin 0( 1 + sin 0 
t 

cos e 
- 
sin2 0 

+ log 
I 

(l+sine~(l+cose) 

sin eIcos e+[zfi isin epj 1 

J2 cos 8 

- (1 + sin ep2 

and hence the average number of reflections, as a 

(40) 

function of the acceptance half angle 8, is given by 

(n)B_A = 1/2(l+sine 
( 

s 

+ log 
[ 

(1 +sin e)(i +COS e) 

sin egos e + [2( 1 + sin e)] li2) 1 

J2 cos 8 (l-sine)(l+2sine) 

- (1 fsin e)3/2 
- _I_.. 

2sin28 1 

Incidentally, the 8 + 0 limit of (n), for the 
figurations of both Fig. 5 and (iv) in Table 2, is 

1 1 
(?z)*_A -+-log-. 

2 e 

(41) 

con- 

(42) 

We have written a ray tracing computer program to 
calculate the exchange factor Es _A(~) for compound 
parabolic concentrators for various value of p, The 
results, displayed inTable 1, indicate that for moderate 
conc~trations (C 5 10, (n> 5 1.3) the simpie formula 

z = E,_,(p) N p(“)B-a 

is good to about 4% for p above 0.1; the lower bound 
(21) agrees with the exact answer to better than 7% for 
all vatues of p. The smaller (n), the better the 
appro~mation, for example, for C d 6, (n) 5 1.0, the 
lower bound (21) reproduces the exact answer within 
2%, for any p. 

Radiation incident on the aperture outside the 
acceptance angle (l0,,\ > 0) of a compound parabolic 
concentrator bounces back and forth between the 
refiector walls until it reemerges through the aperture. 
In order to estimate the fraction of this radiation which 
is absorbed by the reflector, we have calculated [ll] 
the average number of reflections for these rays. It 
turns out to be 

(n)A _A = 2 + l/sin 8 ; (43) 
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Table 1. Exchange factor E,, _A(~) for compound parabolic concentrator as a function of 
reflectivity p and acceptance half angle 0 (the left column also lists the concentration C 
= l/sin 0 and the average number of reflections). For each 8 and p the table lists three 
values for Esma(p): the exact value (top), p(“) (middle), and rigorous lower bound. 

equation (21) (bottom) 

P 

(n>s -A 0.100 0.300 0.500 0.700 0.800 0.900 0.950 = p 

0.148 
0.049 

1.307 0.137 

:59;6) 0.221 0.091 
1.044 0.216 

$!92) 0.330 0.156 
0.807 0.329 

;I$ 0.417 0.212 
0.674 0.416 

;il?6, 0.495 0.268 
0.572 0.495 

(4916, 0.655 0.412 
0.385 0.655 

FL) 0.861 0.701 
0.155 0.861 

0.296 
0.207 
0.275 

0.373 
0.285 
0.364 

0.471 
0.379 
0.468 

0.543 
0.444 
0.542 

0.606 
0.502 
0.605 

0,732 
0.629 
0.732 

0.892 
0.830 
0.892 

0.464 
0.404 
0.443 

0.535 
0.485 
0.526 

0.616 
0.572 
0.613 

0.671 
0.627 
0.670 

0.717 
0.673 
0.717 

0.808 
0.766 
0.808 

0.923 
0.898 
0.923 

0.655 
0.627 
0.643 

0.709 
0.689 
0.704 

0.766 
0.750 
0.764 

0.801 
0.786 
0.800 

0.830 
0.815 
0.829 

0.885 
0.872 
0.885 

0.954 
0.946 
0.954 

0.761 0.875 
0.747 0.871 
0.754 0.873 

0.802 0.899 
0.792 0.896 
0.799 0.898 

0.842 0.920 
0.835 0.919 
0.841 0.920 

0.867 
0.860 
0.866 

0.886 
0.880 
0.886 

0.923 
0.918 
0.923 

0.969 
0.966 

0.933 
0.931 
0.933 

0.943 
0.942 
0.943 

0.962 
0.960 
0.962 

0.985 
0.984 
0.985 

0.936 
0.935 
0.936 

0.949 
0.948 
0.948 

0.960 
0.959 
0.960 

0.966 
0.966 
0.966 

0.971 
0.971 
0.971 

0.981 
0.980 
0.981 

0.992 
0.992 
0.992 

*For each B and p: top entry = exact exchange factor; middle entry = p(“); bottom 
entry = rigorous lower bound, equation (21). 

of course the average has been taken over all diffuse 
radiation outside the acceptance angle, as implied in 
the discussion in Section 2. 

In [ll], further details can be found which are 
important in practice, in particular the effects of 
truncation (i.e. cutting off a portion of the reflector) and 
the transmission factor for collimated incident radi- 
ation. 

5. OTHER EXAMPLES 

In Table 2 the area ratios, the exchange factor 
ER -s(l) and the average number of reflections (n)A + 
are listed for a variety of specular passages, as sketched 
at the left end of each row: 

(i) Parallel reflecting planes (of infinite extent in the 
direction perpendicular to the plane of the paper), 
length I and separation h. 

(ii) Cylindrical segment, usefuf for piping diffuse 
radiation around corners. 

(iii) V-trough, provided trough angle large enough 
so no radiation from B to A can cross over from one 
reflector side to the other. 

(iv) Modiied compound parabolic con~ntrator 
which concentrates radiation onto both sides of a fin; 
for details, see [S] or [ 123. 

(v) Convolute regector trough for circular tube. 
Entrance aperture stretches from left end of dotted line 
to right end of dotted line, and includes top portion of 
tube. Exit aperture B is surface of tube [13]. 

6. CONCLUSIONS 

The examples described above indicate that the 
average number of reflections (n) is easy to calculate 
analytically for the following two types of specular 
radiation passages: (i) passages with sufficient sym- 
metry such that &-A(1)= E,_,(l); and (ii) two- 
dimensional or troughlike passages where no radi- 
ation crosses over from one side of the reflector to the 
other on its way from A to B. Type (i) includes three- 
dimensional passages like Fig. 3, but with arbitrary 
rather than circular cross section. As further examples 
of type (ii) we mention reflector troughs consisting of 
straight segments, arranged such that no radiation 
cross over occurs. More general cases, for instance, 
conical passages of compound parabolic or of V-like 
profile, are more difficult to analyze, although some 
times good estimates for ERmB(l) can be obtained by 
means of shape factors. 

Quite apart from the calculation of (n) itself, we 
have provided a framework for approximating the 
exchange (or transmission) factor r = EB_A(p) by 
means of simple one-parameter or two-parameter 
formulas, equations (19) and (21), respectively. These 
formulas will certainly provide a good approximation 
(to within a few percent) whenever t is larger than 
about 0.9 or E( n> smaller than about 0.1, and in some 
cases, good results are obtained even when I 2 1. 

This approach is particularly useful for the analysis 
of solar energy collectors because in this application 
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Table 2. Examples of two dimensional or troughlike radiation passages 
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Radiation 
passage AsI.% E, -s(l) 

&i I h w 
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good optical efficiency demands that the transmission 
factor z be reasonably close to one. Once (n) has been 
calculated (either for diffuse or for collimated radi- 
ation), 7 can be taken as p(“) without any need to 
repeat the calculation for each new value of p. 
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APPENDIX 

In order to derive equation (20) for the average number of 
reflections, we had assumed that the order of summations in 
equation (15) can be interchanged [S). This is not justified if 
the series falls to converge absolutely. In fact, for con- 
figuration where PB _A(n) falls only like some power of n as n 
+ co (for example like nm4 for the cylindrical segment of 
Section 5, (ii)) most of the expectation values (a> are infinite. 
In such cases, the power series in e (16) for EB -“(p) is not well 
defined. We therefore present a proof which assumes only 
that the probabilities decrease fast enough at infinity to make 
(n)B--A finite. 
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ln the following, we omit the subscripts for simplicity. We With the help of the identity 
start with equation (15), i.e. before changing the order of 
summations, (l-E)“-1 =p”-l= -(l-p)(l+I’+PZ+...p”-‘) 

n-i 

E(p) = i P(n) i (;)(-E)~. (All 
= --E c pk ; (A51 

k=U $3 = 0 ir=o 
this can be recast as 

If <n) is finite. one can separate the O(a”l and 0(&l) terms 
from.the series and write . R(E) = i P(&- “il ~‘1. (‘46) 

E(p)= f P(n) t-w+ i (;)(-E)~ 
n=o SC=2 1 

= 1 -.s[(n) +R(E)] 

with a remainder 

It is convenient to express R(~)intheform 

R(e)=! f P(n)[(l-&)“-I]+ i d”(n) 
En=0 “=i) 

n=O c k=O I1 

This series converges for lpi < 1 and at p = 1 it vanishes, 
hence 

lim R(E) = 0 (AT) 

(A2) 
c-0 

Combined with equation (A2), the vanishing of R(E) at E -t 0 
implies the result 

limE,_,(p)= I-(~I),_~E. (A81 
e-0 

(A31 In the same limit equation (7) becomes 

limEs-a(p)= l-ez&-,#I, (A91 
E-0 B 

(A4) and comparison of the coefficients of s yields equation (20) for 
<@B-.4. 

TRANSFERT PAR RAYONNEMENT A TRAVERS LES PASSAGES 
SPECULAIRES-UNE APPROXIMATION SIMPLE 

Rbumb-On developpe une nouvelle technique d’approximation des facteurs d’echange dans les passages 
reflechissants. On demontre que pour un grand nombre de configurations, m&me celles prbentant des 
surfaces reflechissantes courbes, le nombre moyen de reflexions (n) peut itre calculi & l’aide d’un 
formute analytique simple et sans aucun traCa%e de rayon. La fraction du rayonnement transmis a 
travers le passage, designee par T fun des facteurs d&change), peut alors btre approchhte par t z p(“) si 
le pouvoir rtflechissant p de la paroi du passage est elevt. On en d&luit une limite inferieure rigoureuse 
qui est en accord avec le resultat exact g quelques pour cent pres pour tout E = 1 -p, pourvu que E (n) 
ne soit pas trop grand. Plusieurs exemples sont discutes, comprenant les passages cylindriques, sillons 
en V et concentrateurs paraboliques composes. La methode est particulitrement utile pour le calcul de 

la transmission et l’absorption du rayonnement dans les concentrateurs solaires. 

STRAHLUNGSAUSTAUSCH IN SPIEGELNDEN PASSAGEN 

Zusammenfassung-Zur naherungsweisen Bestimmung der Austauschfaktoren fur die Strahlung in 
spiegelnden Passagen wird eine neue Technik entwickelt. Es wird gezeigt, da5 die mittlere Zahl von 
Reflektionen (n) fiir eine gro5e Zahl von Konfigurationen selbst mit gekriimmten Reflektoroberfl~chen 
mit Hilfe einer einfachen analytischen Formel ohne Verfolgung des Strahieng~ges berechnet werden 
kann. Der Anteil der durch die Passage durchgetassenen Strahlung z (einer der Austauschfaktoren) kann 

durch T z p(") angenghert werden, wenn der Reflektionskoeffizient p der Passage gro5 ist. Es wird eine 
streng giiltige untere Grenze abgeleitet, welche mit wenigen Prozent Abweichung fur jedes E = I -p mit 
dem exakten Ergebnis iibereinstimmt, solange s(n) nicht zu gro5 ist. Es werden mehrere Beispiele 
diskutiert, einschlie5lich zylindrischer und V-fiirmiger Passagen sowie zusammengesetzter Parabolspiegel. 
Die Methode eignet sich besonders zur Berechnung der Strahlungstransmission und -absorption in 

SonnenkoIIektoren. 

JIYYMCTbll? HEPEHOC B 3EPKAJIbHbIX KAHAJIAX. 
HPOCTAS Al-lIlPOKCIiMALJM~ 

hnoTauitn-- Pa3pa6OTaH HOBblil MeTOR anflpOKCRMaU~A KO3++tiQFieHTOB nyPHCTOl-0 o6hresa 
3epKanbHblX Ka5iWlOB. nOiia3aHO,qTO llI!X 60nbmsHcTBa KOH~~rypaUU~,na~e %lpH HCKPHBneHHOfi 
~OBepXHOCT~OTpa~Tena,C~~~~q~CnOOTpa~eH~~ <n) MOXHO paCCY~TaTbCnOMOmb~npOCT0~ 
~annT~qecxo~ tpop~ynbr, He npetieran K nocTpoeemo xoaa nyreti. lips 6onbutnx 3HaveHnKx 
Kos@~uuiieHTa3epKanbHorooTpaxceH~rrpcTeHrw KaHananon~nepe~aHHoronoKa~any~3nyqeH~fl 
7(OPHH113K03~~~~HeHTOBo6~eHa)MO~HOan~~OKCBMR~OBaTbBbl~a)l(eH~eM~~~'"'.~~~e~eneHa 
ToyHart rrmkmm rpaesua,coenanalomaa B npenenax HecKonbKHx npouetiTos co ~~p0rtih.t pe3ynb- 
TaTOMLInlnIO60#BenH4HHbl&~= 1 -~Il&XiyCnOBW HeO'ieHb6OnblUHX3Ha'ieHH8&<n).PaCCMOTpeHO 
HeCKOnbKO IIpWMepOB, BKnIO'IaR UWUWlpWieCKHe li V-06pa3Hble KaHanbl kI CnO)KHble napa6one- 
'iWKAe KOHueHTpaTOpbL MeTon B OCO6eHHOcTw )‘JlO&H JIJlS? pkWi‘2Ta IlpOnyCKaHAR K tiO~JlOl.&HWR 


